Mission Statement

The UWA Landscape Architecture Program prepares students to help resolve the environmental and social challenges of the 21st century through the application of “design thinking” by instilling the theoretical and technical knowledge base of landscape architecture together with the necessary analytical and creative skills required to meet these challenges.

The Program also fosters an in-depth, research-based education in the cultural, theoretical and physical attributes of landscapes with particular focus on issues pertinent to Western Australia and emerging economies in the region.
Goals & Objectives

Our objective is to prepare our graduates with a comprehensive education covering all of the global competencies associated with the practice of landscape architecture with a particular focus on experience gained through addressing local examples and issues.

These issues include matters such as;

• developing a broad understanding of our natural and cultural heritage as a basis from which we can make decisions that will help positively shape our future.

• pro-actively planning for the significant projected and aging population increases over the next 40 plus years.

• recognizing the associated threats to biodiversity and our special relationship to one of twenty five biodiversity hotspots on the planet.

• addressing the impact of global warming on coastal-based settlement in a predominantly arid environment.

• understanding the threats posed by bushfire especially on peri-urban settlements and the methods that can be employed to offset this threat.

• recognizing the implications associated with the combined effect of diminishing rainfall and underground water resources.

• addressing the challenges posed by the need to reassess our historic settlement patterns so as to meet sustainability objectives necessary to assure a positive future.

• addressing the environmental impact and social issues arising from contemporary mining practices.

• actively contributing to the positive impact that landscape architects can have in dealing with the urban heat island effect.

• acknowledging the manner in which we can learn from the traditional owners of our lands and waters and how this may be engaged with and potentially applied not only in the context of gaining a better understanding of the environment, social and spiritual contexts within which we live, but also of the other cultures with whom we share this place.
2013 saw the Landscape Architecture Course at UWA reach its 20th year milestone, a significant occasion in a world grappling with the dilemmas of climate change, post global financial crisis economic rationalism, diminishing potable water resources and the ongoing issue of widespread social inequity.

Western Australia is geographically isolated yet profoundly connected to the old and new landscapes of this world. The uniqueness of its natural and cultural landscapes are highlighted and celebrated within the Course and form the basis to the process of inquiry required to understand this place and how to interpret landscapes outside Western Australia.

Throughout these twenty years, the Faculty has continued to cultivate graduates that have a strong ability to grasp conceptual, theoretical and practical concepts of design theory and practice as they apply to real world situations. Many graduates from the course find work outside Western Australia, including other Australian cities and regional areas, Europe, United Kingdom, United States of America and more recently in Singapore, China and our other Asian neighbours as the Nation’s economic links to these areas continue to grow.

This year’s catalogue provides an edited overview of the work undertaken over both semesters, including students in the honours stream. In addition I would like to highlight some of the higher level of academic work currently being undertaken by Landscape Architecture students at the Doctorate level.

The profession of Landscape Architecture is arguably facing a period of renaissance, with the processes, methodologies and level of inquiry particular to the discipline finding an ever increasing relevance to the formulation of collective solutions regarding the environment, social, economic and cultural systems of our world.

It is within this context that students graduating from the Program at the University of Western Australia find themselves equipped to engage in the level of discussions required at the theoretical, conceptual and practical levels, whether that be independently or on multi-disciplinary projects, further cementing them as professionals and future leaders with a global environmental outlook.
The main aim of the design is to create an interactive land art project which revegetates pockets of open ground on the site. Trail visitors will be able to purchase indigenous plant seed bombs from a vending machine located at the Base and Summit gardens. At each lookout along the walk trail wind driven seed launchers can be loaded with the seed which is then dispersed into the landscape around the lookout. These plants will then disperse their own seed driving the process independently.
Avon River Flow Diagrams

Seasonal Flow

These Seasonal Flow diagrams show a gabion wall built into the silted pools. The concept is to re-vegetate the banks and riverbed to bring back a more natural meandering river. The upstream side of the walls will be washed out creating cool deep watering holes for wildlife to inhabit during the summer months.

The down river side of the wall will slow water flow and catch sediments which in turn can be seeded and reclaimed riparian vegetation.

1 - 100 Year

When the Avon River was untouched by European settlers it was natural for the river to spill its banks, the dense vegetation in and around the meandering Avon River slowed the flow.

In the present day the Avon’s overflow flood areas consist of cleared farmland and rural towns. The RTS was commissioned to limit the Avon’s flooding by increasing the flow speed. We now know that this in detrimental to the Avon Rivers health and needs to be amended.

During floods the walls and vegetation around them are designed to be submerged and when vegetative is stable and mature, slow the water to decrease sediment fallout.
existing main street
white builtform indicating active commercial landuses and a scattered commercial area, the concept involves improving the vitality of the main street, a nodal pattern of commercial development is required.

identification of 4 main activity nodes
creating activity nodes along the main street to improve the economic vitality of the main street, while also improving connectivity. Further identification of major leak points to the town behind the main street to strengthen the broader town site connection to the main street.

aligning the new main street framework with proposed ecological corridors.
creating a new framework for enhancing the circulation of the town site, the main street acts as the main distributor for pedestrian circulation. The attraction nodes perform as connect the site walkability creating a more appropriate and enhanced rural circulation. The two outer nodes act as crucial entry points to the town centre to generate initial interest to passers by.

Nodal development allows for new streetscaping opportunities along connection zones between the nodes.
creating commercial nodes to increase economic vitality with market square pockets along the main street, by localising the commercial landuses in nodes, the spaces become active which allows for rural appropriate streetscaping in specific and effective positions. Increased commercial appeal through street beautification.

prominent intersections require street edge improvements to either attract or direct pedestrians.
Creating meanders to slow sediment run-off
By regrading the drainage flow to have more serpentine twists and bends gives the run-off more time to drop phosphorus-carrying sediment.

Adding dispersed drainage ponds
Drainage ponds will slow and hold water for a short period to allow the phosphorous caught within eroded sediment to evaporate.

Ecological network created through connecting corridors
Connecting larger areas of bushland through corridors and stepping stone areas enhances habitat areas and diversity.

Proposed new tree farming bands aligned to slope
Retrofitting existing agricultural land with mixed farming opportunities. By aligning these new tree belts to contour heights makes it possible to farm and harvest both the existing wheat crop and the new crop.

Opportunity for Bio-diesel / Bio-ethanol plant
The harvested tree material will be transported to a local plant where it will be digested and produce Bio-fuels which can be used locally.

Opportunity for education
Beverley's close proximity to Perth allows student tour groups to come to the town, learn about exciting new sustainable agricultural practices and experience the landscape of the Avon catchment all within a day.

New living areas
As new jobs are created through new industries, there will be a need to house these new residents.

Town centre's proximity to farmland and river
The town centre is located between a working farm and the Avon river. These three diverse landuse types provide opportunity for educational interpretation.

1. Removing drainage bank reinforcement
Reprogramming reinforcement interventions along the channel that respond more appropriately to natural processes and facilitate recreational, aesthetic and functionality purposes.

2. Selective bank reinforcement
Reprogramming reinforcement interventions along the channel that respond more appropriately to natural processes and facilitate recreational, aesthetic and functionality purposes.

3. Living revetment
Vegetation banks secure the drainage slide and prevents excessive erosion. The riparian plants diversity habitats for bird and amphibious life.

4. Semi-natural riparian management using dead wood
Allowing pedestrian passage over the drainage channel and disrupts waterflow in heavy rainfall events.

5. Adding bed load
Dividing the channel can markedly improve structural diversity and recreational quality. Inaccessibility of mound forms makes them a refuge for bird and amphibious life.

6. Creating multiple channels
Dividing the channel can markedly improve structural diversity and recreational quality. Inaccessibility of mound forms makes them a refuge for bird and amphibious life.

7. Creating meanders
Dividing the channel can markedly improve structural diversity and recreational quality. Inaccessibility of mound forms makes them a refuge for bird and amphibious life.

8. Introducing attractive elements
Vegetation banks secure the drainage slide and prevents excessive erosion. The riparian plants diversity habitats for bird and amphibious life.

9. Ramps and slides
Allowing pedestrian passage over the drainage channel and disrupts waterflow in heavy rainfall events.

10. Sand and gravel beaches on inner bends
In-canal areas

of surfaces in White Gum Valley are made up of driveways.
In today’s urban context we are faced with significant global challenges relating to population growth and growing pressures on our environment. To address these challenges, our cities will increasingly be submitted to programs of urban reform. The major challenge our cities must overcome in this century is attempting to keep suburban sprawl in check while ensuring that strategies are put in place for urban infill in our greyfield suburbs. This especially applies to Perth, an already sprawling city with abundant greyfield suburbs. One such suburb, White Gum Valley, is the focus of this honours project.

Greyfield areas are usually found in ‘the middle ring’, between 5km and 25km from the city centre. They are relatively well serviced by existing transport, amenity and employment. As they are “aging, occupied residential tracts of suburbs that are physically, technologically and environmentally obsolescent and which represent economically outdated, failing or under-capitalised real estate assets”, they provide significant opportunity for development.

The theoretical framework that this design by research project works within is landscape infrastructure. This is a sub-category of landscape urbanism, an approach that emphasises the landscape of the city over more traditional methods of organisation. This approach to urban design, from a landscape perspective, allows the city to be seen through a lens where the suburban condition can be understood in terms of its context, infrastructure and the “spaces in between.” There is then the opportunity to test how this approach might allow us to completely re-imagine the existing suburban condition in the context of White Gum Valley. This includes re-imagining how greyfield suburbs can creatively adapt for an increasing population.

The hypothesis of this project is that, through a strategic approach to design, a framework can be created for the future development of our greyfield suburbs that is predominantly influenced by an extensive understanding of the landscape. Using landscape infrastructure as a model to realistically and meaningfully engage with the complexities of a site, this framework should support an enhanced public landscape system that forms the necessary connective tissue of a growing community.
PERMEABLE SURFACES 57%

PUBLIC OPEN SPACE 21%
- VERGES 18%
- SCHOOL < 1%
- PARK < 1%
- SUMP < 1%

PRIVATE OPEN SPACE 37%

IMPERMEABLE SURFACES 43%
- ROAD 12%
- BUILDING 21%
- DRIVEWAY 10%
<table>
<thead>
<tr>
<th>Ratio Percentage</th>
<th>Main Drag</th>
<th>Main Drag (The Valley)</th>
<th>Regular Streets</th>
<th>Bluegreen Corridor</th>
<th>Bluegreen Corridor (The Valley)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% 20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invariable Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Facilitated Patch Growth - Scenario 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Facilitated Patch Growth - Scenario 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Facilitated Patch Growth - Scenario 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Facilitated Patch Growth - Scenario 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Facilitated Patch Growth - Scenario 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Green: patch typologies with predominately ecological function
- Pink: patch typologies with predominately social function
POST-DRIVEWAY TYPOLOGIES

PATCH TYPOLOGY OPTIONS

- Skate Park
- Turfed Area
- Revegetation Area
- Natureplay Area
- Outdoor Gym
- Orchard
- BBQ or Pizza Oven Area
- Allotment Gardens
- Community Gardens
THE MAIN DRAG + THE VALLEY

- Resident Cluster Parking
- Short Term Cluster Parking
- Cycle Path
- Ecological Thread
- Community Gardens?
- Driveway to Greenway
- Social Thread
Murchison Radio Observatory

Murchison Settlement
Walking Murchinson | Rob Grandison

Walking Murchison is a walking trail network located in the Shire of Murchison in the Mid West of Western Australia. Designed to expose travellers to some of the 78 different landsystems that generate the outback’s unique character, the trail links the Murchison Settlement with the Murchison Radio Observatory (MRO) - the site of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope.

The settlement is located in Western Australia’s Mid West, approximately 300km north east of Geraldton, within the Shire of Murchison. The Murchison region is roughly the size of the Netherlands with a resident population of around 120 people and a population density of around one person for every 350 square kilometres.

Pastoral history in the Shire of Murchison can be traced to the 1870’s when Frank Wittenoom and his brother took up land at Yuin Station and explored north on horseback. A strong equine association persists to the present day with races and polocrosse tournaments highlights of the yearly calendar.

The WA State Government began acquiring land in Murchison between 1999 and 2004 to “incorporate important bioregions into the conservation estate and develop tourism as a means of revitalising a traditionally low profile and economically depressed region.”

This project aims to build on this initiative.

The main directive of the project explores a 75km, five night outback pilgrimage designed to direct travellers through the oldest landscape on Earth linking significant cultural historic sites both pastoral and indigenous before arriving at the MRO. Secondly, an appropriate campsite design to facilitate the management of the Murchison Settlement’s uncommon visitation pattern. The Settlement sees relatively few visitors for the majority of the time but for a few occasions throughout the year these numbers balloon to 300 for a weekend. Events such as the annual Polocrosse tournament draw visitors from around the state while the Murchison Astro-fest hosts guests speakers from around the globe. Finally, an extensive Shire-wide network of trails providing an authentic tourist experience that draws on, and celebrates the distinctive cultural and environmental resources of the region.

LAND SYSTEMS

SETTLEMENT - MRO

YANGANOO Land System

Almost flat hardpan mesh plains support growth of Acacia shrublands.

UNIT ONE: Hardpan Plains
Occasional patches of sandplain mainly in transcurrent zones. Mixed height grazing shrublands dominated by Acacia species.

UNIT TWO: Wanderer Banks
Interconnecting low sandplain knobs elongated to the SE 1 m above surrounding hardpan plains (unit 1).

UNIT THREE: Hardpan plains
Extensive flat or very gently inclined plains. Subject to sheet flow. Lightly shrub with mixed grasses, quakes.

UNIT FOUR: Mula-ge grooves
Grove formations up to 50m long and 10m wide with dense vegetation.

UNIT FIVE: Drainage tracts
Wide tracks up to 70m wide into hardpan where flow is concentrated.

NARRYER Land System

Low hills, flat and breakaways allow very gently undulating stringy slopes and plains on granitic and quartz with sparse Acacia shrublands.

UNIT ONE: Hill crests, ridges and low stringy plains
Low stringy hills and ridges to 30 m drowned in a mantle of freely drained and quartz.

UNIT TWO: Breakaways and dissected plateaux
Low breakaways and quartz escarpments to 20 m.

UNIT THREE: Footslope plains
Undulating and gently sloping stringy and quartz plains.

UNIT FOUR: Lentic reed plains
Gently sloping lentic reed plains.

UNIT FIVE: Sandy banks and restricted sand sheets
Relaxed sand plains, fringes and bands 100m long and 10m wide.

UNIT SIX: Stony plains
Extensive areas of undulating sand plains.

UNIT SEVEN: Saltine stringy plains
Rocky, stony sand plains with quartz outcrops.

UNIT EIGHT: Drainage tracts and channels
Dendritic channels up to 300 m wide and dissecting the plains.

SHERWOOD Land System

Gently sloping stringy and sandy plains on granitic and quartz, with occasional quartz outcrops.

UNIT ONE: Plateau edgels, residual and breakaways
Riverine edgels 50 m long with 20 m escarpments occurring as isolated peaks to 20 m high. Outcrops capped, cliffs, and bluffs with shallow caves.

UNIT TWO: Low hills, rises and roll fields
Irregular low stringy hills, granite hills with quartz outcrops and tens to 10m high.

UNIT THREE: Footslope plains
Elemental plains, low slope undulations to 10 m.

UNIT FOUR: Sandy alluvial fans
Shallow alluvial channels.

UNIT FIVE: Gritty surfaced plains on granitic
Predominantly unundulating slopes.

UNIT SIX: Stony plains and interfluves
Undulating plains with granite outcrops.

UNIT SEVEN: Drainage tracts and channels
Dendritic channels up to 300 m wide and dissecting the plains.

WAGUIN Land System

Sand plains and low breakaways with lower plains.

UNIT ONE: Sand plains
Bare and partly vegetated sand plains up to 20m.

UNIT TWO: Planeau remnants and low breakaways
Gently sloping alluvial terraces to 20m.

UNIT THREE: Footslope plains
Elemental plains, low slope undulations to 10 m.

UNIT FOUR: Sandy alluvial fans
Shallow alluvial channels.

UNIT FIVE: Alluvial plains
Extensive area of unvegetated plains covering the area.

UNIT SIX: Drainage tracts
Dendritic channels up to 300 m wide with shallow channels.
WAGUIN Land System
Sand plains and low breakaways with lower plains.

UNIT ONE: Sand plains
Elevated areas of sand extending up to 20m.

UNIT TWO: Plateaux remnants and low breakaways
Gently sloping lateritic breakaways to 20m.

UNIT THREE: Eroded breakaways
Flattened areas below breakaways, 100m - 500m long.

UNIT FOUR: Rocky plains with sandy covers over granite
Rocky plains with occasional granite outcrops.

UNIT FIVE: Alluvial plains
Alluvial plains with sandy covers over granite.

UNIT SIX: Drainage floors
100m wide with channel networks.

AGAMEMNON Land System
Rugged hills with peaks and ridges above extensive slopes.

UNIT ONE: Peaks, outcrops and ridges
Rocky peaks and ridges with granite outcrops.

UNIT TWO: Rounded summits and rocky slopes
Rounded hilly areas with granite outcrops.

UNIT THREE: Drainage flats
Restricted drainage areas.

UNIT FOUR: Narrow drainage floors and channels
Radially dendritic, 100m wide with channel networks.

UNIT FIVE: Channels
Riverbeds and channels up to 100m wide with channels incised to 3m.

BERINGARRA Land System
Major running water systems with extensive floodplains.

UNIT ONE: Hardpan plains
Almost flat alluvial plains in transitional areas.

UNIT TWO: Alluvial plains
Gently sloping alluvial plains subject to flooding.

UNIT THREE: Floodplains
Almost flat, dissected surfaces with shallow channels.

UNIT FOUR: Wide drainage floors
Almost flat with occasional reconnection of channels.

UNIT FIVE: Channels
Riverbeds and channels up to 100m wide with incised channels.

UNIT SIX: Hardpan plains
Gently sloping plains.

UNIT SEVEN: Drainage lines
Sandy valley drainage lines with well developed channels.

CHALLENGE Land System
Gently sloping uplands and sandy Arenosols with granite outcrops and minor breakaways to 20m high.

UNIT ONE: Domes, bar fields and low breakaways
Granite outcrops and low breakaways, 10m - 20m.

UNIT TWO: Flat plains and saline plains
Gently sloping plains.

UNIT THREE: Grit-surfaced plains
Extensive undulating plains with sandy soils.

UNIT FOUR: Stony plains
Mostly flat with occasional outcrops and low breakaways.

UNIT FIVE: Sandy bars
Occasional sandy bars, less than 50m long.

UNIT SIX: Hardpan plains
Gently sloping plains.

UNIT SEVEN: Drainage lines
Sandy valley drainage lines with well developed channels.
Camp Site Evolution

Clearing

No space allocation with the camp. Site marked by simply
the absence of obstructions. This is the current typology at
the Settlement.

Allocated sites

Secondary level. Individual campsites are maintained by
boundaries - usually logs, large stones or vegetation.

Allows easier management of sites and creates
opportunities for advanced booking systems.

Loop Phasing

Phase 1

Utilise existing infrastructure and turf area and designate
Northern side to tent campers and southern side to RV.

Phase 2

Extend sites to a 120m radius from ablutions block. These
become primary sites due to proximity to Roadhouse.

Phase 3

Primary loops are extended. Satellite loops are utilised in times
of high visitation. All loops exist within the 120m radius of the
three existing ablution blocks.

Separation of RV and tents

The popularity of recreation vehicles (RV) camper safety and comfort
was addressed with the creation of loop roads and separate zones
for the powered RV sites and the more basic tent only sites.

Tent Site Unit

Parking Space
12m x 4.5m

Tent Allocation
5.4m radius

Water drains into meadow zone
at rear of tent site

Recreation Vehicle Site Unit

Parking Space
16m x 4.5m

Recreation area
~ 50m²

Water drains into meadow zone
at rear of tent site
Throughout history, as cultural markers shifted, so too did the way in which the individual perceived the urban landscape. Perception changed, shifting in emphasis from the auditory to the visual. Sound and the Urban Landscape explores these shifts and transformations in perception, considering their influence on implementation in the urban landscape. The development of the city as influenced by developments in perception has resulted in an urban landscape which is primarily designed with and for the visual. The replacement of an auditory focus in the city in a contemporary, visually-centric context is be suggested to speculate upon the potential benefits of a multi-sensory awareness in the contemporary city.

Sound and the Urban Landscape considers opportunities for moving beyond the current visual emphasis in perception. These opportunities are explored and reflected upon through a consideration of the re-emphasis of the auditory in the contemporary city.
Green Infrastructure: Planning a national green network for Australia | Simon Kilbane

This research-by-design PhD attempts to spatially articulate national biodiversity conservation and policy targets through increasing protected area representation and maximising ecological connectivity. The idea of a National Green Network is more than habitat restoration to protect the Australian gene pool against climate change. As well as protecting biodiversity the system has other synergistic benefits. It creates recreational greenways and cultural corridors that can be related to indigenous culture. Through agro forestry such a system sequesters carbon and could help regional landscapes deal with salinity and water security. This new green infrastructure is proposed across the full suite of Australia’s existing land-uses, explored from continental to local scales, highlighting the complexity in attempting to articulate policy targets for biodiversity protection. It explores the nexus between Landscape Ecology and Landscape Architecture and is an exploration of the potentials of these two disciplines to maximise ecological and cultural resilience in a changing world’.

Student | Simon Kilbane | simonkilbane@gmail.com
Supervisors | Richard Weller, Richard Hobbs
A Contemporary Pilgrimage: Following cultural landscapes of distance through the practice of Art-Walking

This research stands at the nexus of a cultural collaborative and conciliatory approach to landscape in following an Indigenous pathway, the Caterpillar Dreaming, through Perth City, some 3000km’s to the greater desert regions. The project looks at what it means to be working, walking and representing the West Australian landscape through the lens of the Caterpillar, considering the collaborative distance between Aboriginal and Non-Aboriginal, the distance between historic pasts and distances of landscape. The project uses the practices of Art-Walking, concilatory theory, and phenomenology to facilitate a respectful diologic process with these distances, and a mapping of the Caterpillar pathway.

Student | Ailsa Grieve | ailsa.gps@gmail.com
Supervisors | Grant Revell
New Forms of Public Open Space in the City of Jeddah: Urban Design Scenarios for increasing the provision of POS to enhance the Urban Health of a rapidly growing Saudi Arabian Metropolis.

With 3.4 million people Jeddah is Saudi Arabia’s second largest city. According to the World Health Organisation 36.5 per cent of Saudi Arabians are obese and this is particularly so in the car dominated city of Jeddah. Currently, the amount of POS provided in Jeddah is less than 2 m² per person and less than 1 m² per person in more than half of Jeddah’s planned residential districts. This provision is less than the World Health Organization’s recommendation of 9 m² per person. Presently in Jeddah there is virtually no passive, active or pedestrian friendly public space.

Therefore, this research presents research concerning ways of increasing the provision of POS in Jeddah. The research develops three urban design scenarios. The urban design scenario that emerges from the research is intended to be both practical and culturally appropriate. The research seeks to demonstrate ways in which landscape architects can improve the physical and ecological health of contemporary Saudi Arabian cities.

Student | Nawaf Alhajaj | alhajaj_nawaf@yahoo.com
Supervisors | Richard Weller, Nigel Westbrook
Learning from the Edge: reimaging Perth’s peri-urban landscape

Can a revaluation of the peri-urban landscape meet the current demands for suburban growth whilst increasing the provisioning services of this zone for the city? Perth is one of the most isolated cities in the world and the site of Australia’s fastest growing urban population. By 2056, the population is expected to increase from 1.6 million to 3.2 million people, with planning policies directing 53% of this growth to new greenfield development in the peri-urban zone of the city (ABS 2012).

The peri-urban defies simple categorisation, neither exclusively urban, suburban nor rural, but something comprised of all these conditions whilst constantly been created and recreated by the processes of urbanisation. The transformation of this territory responds to both resistances and continuities within the urban field, creating occlusions and temporary or permanent points of interruption in the flows across the edge of the city.

This research explores the application of landscape architectural design as a tool for uncovering and communicating the embedded and intrinsic values of the peri-urban. It utilises speculative design methodologies and scenario planning to develop new techniques to map, interpret and encapsulate the edge. By carefully studying the peri-urban condition, with respect to its complexities and richness, this research reveals its diverse socio-ecological and cultural qualities. These qualities projected against the current model for city expansion positions the peri-urban as a valuable hybridised landscape type that could yield important new development typologies whilst functioning as a symbiotic filter for future growth of the city at its edges.

Student | Sara Padgett Kjaersgaard | sarapadgett@hotmail.com
Supervisors | Richard Weller, Nigel Westbrook, Julian Bolleter
photos | Sara Padgett Kjaersgaard | Aerial imagery: Google Earth (accessed March 23 2012)
Where to for water sensitivity? The role of landscape architectural design research in achieving water sensitive cities in Australia?

This research explores the role of design research to develop the vision of water sensitive cities in Australia. It investigates how Landscape architecture can expand on what water sensitive cities could mean on poetic as well as pragmatic levels. Reconsidering the connections between how we design cities and how we use water is ultimately its aim.

On a fundamental level water sensitive urban design seeks to reinstate a balance between natural hydrological systems and human engineered ones. Now water sensitive urban design has grown to encompass a whole-of-city vision, encapsulated by the idea of a ‘water sensitive city,’ but is does so based on its attention to the system of stormwater. This research argues that a realisation of these ambitions must engage with and challenge the underlying reasons why a desensitised relationship to water exists in urban environments and demonstrates how the discipline of landscape architecture can provide tools to do this.

Student | Josephine Neldner | josephine.neldner@gmail.com
Supervisors | Richard Weller, Carolyn Oldham, Geoffrey London
The ability to adapt residential lifestyle to environmental flux, population growth and resource scarcity while maintaining economic growth and prosperity through innovation and environmental rejuvenation of the region are now central to all design professions. These challenges will reshape the spatial and physical form of residential environments in Australia and challenge the cultural and social norms that currently constitute modern suburban living.

This thesis examines the potential for Landscape Architecture to integrate emerging environmental parameters into residential environments. The overarching aim being to positively reinforcing the relationships between urban metabolism and endemic regional systems through the transfer, up cycling and redistribution of resources locally and to the region. Emerging environmental parameters drawn from areas of health, food, water, waste, energy, and transportation form the basis for the construction of a series of design parameters. The parameters (design rules) represent a form of maximize sustainability in each field. These ideal, hypothetical, sustainability parameters are applied to conventional, contemporary suburban site to force its morphology into different configurations. The resultant new forms are then measured and compared to the orthodox original. This process enables an empirical and critical examination of ‘sustainability’ in relation to suburban development. By initially isolating individual parameters, the thesis can identify the complexity and latent contradictions that are often concealed in the discourse and practice of sustainability. The design process involves analysing both the beneficial and adverse aspects of the interaction of various parameters, ultimately enabling their construction together with an urban and social program, to create potentially new ‘sustainable’ residential models.

Student | Paul Verity | ptverity@yahoo.com.au
Supervisors | Tinka Sack
The False Mirror René Magritte, 1928
out and about in 2013...
PARKing Day in collaboration with the City Of Perth and the Australian Institute of Landscape Architects (AILA) | William Street | Perth CBD | photos: Tony Blackwell
DISCIPLINE

Tony Blackwell, Winthrop Professor, Discipline Chair
Christopher Vernon, Associate Professor
Grant Revell, Associate Professor
Tinka Sack, Assistant Professor
Julian Bolleter, Assistant Professor
Richard Weller, Adjunct Professor
Dr Helen Whitbread, Adjunct Senior Lecturer
Jeremy Flynn, Adjunct Lecturer

FACULTY

Jennie Officer, Associate Professor
Nigel Westbrook, Associate Professor
Kate Hislop, Associate Professor
Lee Syminton, Assistant Professor

SESSIONAL LECTURERS

Jeremy Macmath
Vanessa Margetts
Sara Padgett Kjaersgaard
Craig Lovering
Andrew Thomas
Alexander Fossilo
Alexandra Farrington
Craig McCormack
Simon Kilbane